The 2nd Kobe University Brussels European Centre Symposium

-1.89 3740 46 -625 5

Panel Discussion

Hormoz MODARESSI Head, Risks Division BRGM, France

Scientific Perspectives following GEJET

Comprehension of mechanism

- Analysis and modeling the seismic source
- Improving Tsunami generation models
- Analysis of Systemic Vulnerability (FP7: Syner-G)
- Risk Analysis including transient vulnerability, Cascading and Conjoint events (FP7 MATRIX)
- Knowledge transfer and capitalization from Japanese experience on Early Warning and Alert
 - Elaboration of Early Warning Systems :
 - European : (FP7 : REAKT)
 - Regional : (RATCOM)

Model 2

Model 4

Numerical Seismic Source Modeling

> Seismic motion in 3D

Vertical ground velocity [cm/s]

Miyagi (120 km East of the epicenter)

Ibaraki (400 km South-West of the epicenter)

FDM simulation GENCI-CINES (128 proc)

Tsunami modeling

> Generation

Example : Antilles (Barduda, M 8,3)

> Submersion

- Example : Papenoo (Tahiti, PF)
- > Utilization of SurfWB
- Taking into account buildings and land roughness
- > Better estimation of attained zones

Two examples of recent collaboration with Japon on Tohoku Earthquake (Japan Science and Technology Agency (JST)/ French National Research Agency(ANR))

ONAMAZU : Quantitative assessment of nonlinear soil response during the great 2011 Tohoku earthquake

with

- Disaster Research Prevention Institute (DPRI), Hiroshi Kawase
- National Research Institute for Earth Science and Disaster Prevention (NIED), Nelson Pulido
- Shimizu Corporation, Kenichi Tsuda
- DYNTOHOKU : Dynamics of the 2011 Tohoku earthquake: from long term stress accumulation to asperities

with

- National Research Institute for Earth Science and Disaster Prevention (NIED), Eiichi Fukuyama
- University of Tokyo (UTOKYO) Satoshi Ide
- Geospatial Information Authority of Japan (GSI) : Takuya Nishimura

ible

SYNER-G

Systemic Seismic Vulnerability and Risk Analysis for Buildings, Lifeline Networks and Infrastructures Safety Gain

Coordinator: Prof. Kyriazis Pitilakis, Aristotle University, Thessaloniki, Greece Duration: 36 months (starting date: Nov. 1st, 2009)

Project Webpage: <u>http://www.syner-g.eu/</u>

Géosciences pour une Terre durable

			}-G ∼∽	11							SEVENTH FRAMEWORI
	14 par	ticipant	is from		ntries					tatatatatat	
							C*				
	GRE	AUS	FRA	BEL	NOR	ITA	TUR	GER	UK	USA	JAP
1	ARISTOTLE UNIVERSITY OF THESSALONIKI										GREECE
2	VIENNA CONSULTING ENGINEERS									VCE	AUSTRIA
3	BUREAU DE RECHERCHES GEOLOGIQUES ET MINIERES									BRGM	FRANCE
4	COMMISSION OF THE EC - DIRECTORATE GENERAL JOINT RESEARCH CENTRE									JRC	BELGIUM
5	NORWEGIAN GEOTECHNICAL INSTITUTE									NGI	NORWAY
6	UNIVERSITY OF PAVIA									UPAV	ITALY
7	UNIVERSITY OF ROMA "LA SAPIENZA"									UROMA	ITALY
8	MIDDLE EAST TECHNICAL UNIVERSITY									METU	TURKEY
9	ANALYSIS AND MONITORING OF ENVIRONMENTAL RISKS, UNIVERSITY OF NAPLES FEDERICO II									AMRA	ITALY
10	UNIVERSITY OF KARLSRUHE									KIT-U	GERMANY
11	UNIVERSITY OF PATRAS										GREECE
12	WILLIS GROUP HOLDINGS										υκ
13	MID-AMERICA EARTHQUAKE CENTER, UNIVERSITY OF ILLINOIS									UILLINOIS	USA
14	RESEARCH	CENTRE FOR	URBAN SAFET	Y AND SECL	JRITY, KOBE U	INIVERSITY				UKOBE	JAPAN

SYNER-G concept and goals

SYNER-G three main objectives

- Select the most advanced fragility functions and methods to assess the physical and societal-economic vulnerability of all assets, improving and further developing new ones where necessary, considering European distinctive features
- Develop a unified methodology to assess vulnerability at a system level considering interdependencies between elements at risk (physical and non-physical), belonging to different systems and between different systems as a whole at city and regional scale
- Build an appropriate open-source software and tool to deal with systemic vulnerability

Representative results: Fragility Curves

New numerical fragility curves for bridge abutments based on 2D dynamic analyses for different soil types, abutment geometries and input motions

Representative results: Fragility Curves

New numerical fragility curves for shallow tunnels in alluvial based on 2D quasi static analyses for different soil types, tunnel geometries and input motions

Representative results: Fragility Function Manager

Comparison of Functions

Representative results: Integrated evaluation of physical and socio-economic performance indicators

Representative results:

Displaced Population (Uninhabitable Buildings)

cities' location and seismic sources

Representative results: Pilot application

Demand in each grid cell proportional to population Cell demands aggregated to reference node

Representative results: Pilot

Demand in each grid cell proportional to population on activity (industrial/residential) Cell demands aggregated to reference node

EPN topology + demand evaluated at nodes

Representative results: Pilot application

= 7 Scenario event on source \geq

ご清聴ありがとうございました

Dank u voor uw aandacht

Merci pour votre attention

Thank you for your attention

